Effect of NO on EDHF response in rat middle cerebral arteries.
نویسندگان
چکیده
Whereas the actual identity of endothelium-derived hyperpolarizing factor (EDHF) is still not certain, it involves a process requiring the endothelium and eliciting hyperpolarization and relaxation of smooth muscle. It is neither nitric oxide (NO) nor prostacyclin, and its presence has been demonstrated in a variety of vessels. Recent studies in peripheral vessels report that EDHF-mediated dilations were either attenuated or blocked by NO. Studies presented here demonstrate that NO does not block EDHF-mediated dilations in cerebral vessels. Rat middle cerebral arteries were cannulated, pressurized, and luminally perfused. EDHF-mediated dilations were elicited by the luminal application of ATP in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME) and indomethacin (inhibitors of NO synthase and cyclooxygenase, respectively). These dilations persisted when S-nitroso-N-acetylpenicillamine, an NO donor, was added exogenously in the presence of L-NAME, or when endogenous NO was present but its cGMP actions were blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of guanylate cyclase. These findings demonstrate that the EDHF response is not suppressed by NO in cerebral vessels and suggests a role for EDHF during normal physiological conditions.
منابع مشابه
Thromboxane A2 inhibition of SKCa after NO synthase block in rat middle cerebral artery.
BACKGROUND AND PURPOSE NO/prostanoid independent, EDHF-mediated hyperpolarization and dilation in rat middle cerebral arteries is mediated solely by endothelial cell IK(Ca). However, when the NO-pathway is also active, both SK(Ca) and IK(Ca) contribute to EDHF responses. As the SK(Ca) component can be inhibited by stimulation of thromboxane A(2) (TxA(2)) TP receptors and NO has the potential ab...
متن کاملArachidonic acid metabolites, hydrogen peroxide, and EDHF in cerebral arteries.
We tested the hypotheses that EDHF in rat middle cerebral arteries (MCAs) involves 1) metabolism of arachidonic acid through the epoxygenase pathway, 2) metabolism of arachidonic acid through the lipoxygenase pathway, or 3) reactive oxygen species. EDHF-mediated dilations were elicited in isolated and pressurized rat MCAs by activation of endothelial P2Y(2) receptors with either UTP or ATP. All...
متن کاملP-247: To Evaluate The Oxytocin Effect on Maternal-Fetal Circulation during Termination of Pregnancy
Background: To evaluate the effect of oxytocin on blood circulation of fetus and uterus by Doppler ultrasound. Materials and Methods: Forty six pregnant women were assigned to receive for indication of delivery intravenous oxytocin. Doppler velocitometry before and after administration of oxytocin for umbilical,middle cerebral artery and uterine artery were performed, and Pulsatility index (PI)...
متن کاملRole of estrogen in modulating EDHF-mediated dilations in the female rat middle cerebral artery.
We tested the hypothesis that endothelium-derived hyperpolarizing factor (EDHF) plays a less dominant role in the female cerebrovasculature. The contribution of EDHF to the ATP-mediated dilation was determined in middle cerebral arteries (MCAs) isolated from male and female rats. Four groups of rats were tested: intact male (n = 12), intact female (n = 13), estrogen-treated ovariectomized femal...
متن کاملMechanisms of endothelial P2Y(1)- and P2Y(2)-mediated vasodilatation involve differential [Ca2+]i responses.
The present study was designed to evaluate the role of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) in the difference between P2Y(1)- and P2Y(2)-mediated vasodilatations in cerebral arteries. Rat middle cerebral arteries were cannulated, pressurized, and luminally perfused. The endothelium was selectively loaded with fura 2, a fluorescent Ca(2+) indicator, for simultaneous measu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 282 2 شماره
صفحات -
تاریخ انتشار 2002